Testing a single regression coefficient in high dimensional linear models
نویسندگان
چکیده
منابع مشابه
Testing a single regression coefficient in high dimensional linear models.
In linear regression models with high dimensional data, the classical z-test (or t-test) for testing the significance of each single regression coefficient is no longer applicable. This is mainly because the number of covariates exceeds the sample size. In this paper, we propose a simple and novel alternative by introducing the Correlated Predictors Screening (CPS) method to control for predict...
متن کاملMultiple testing in high-dimensional linear regression
In many real-world statistical problems, we observe a large number of potentially explanatory variables of which a majority may be irrelevant. For this type of problem, controlling the false discovery rate (FDR) guarantees that most of the discoveries are truly explanatory and thus replicable. In this talk, we propose a new method named SLOPE to control the FDR in sparse high-dimensional linear...
متن کاملProfile forward regression screening for ultra-high dimensional semiparametric varying coefficient partially linear models
In this paper, we consider semiparametric varying coefficient partially linear models when the predictor variables of the linear part are ultra-high dimensional where the dimensionality grows exponentially with the sample size. We propose a profile forward regression (PFR) method to perform variable screening for ultra-high dimensional linear predictor variables. The proposed PFR algorithm can ...
متن کاملLinear Hypothesis Testing in Dense High-Dimensional Linear Models
We propose a methodology for testing linear hypothesis in high-dimensional linear models. The proposed test does not impose any restriction on the size of the model, i.e. model sparsity or the loading vector representing the hypothesis. Providing asymptotically valid methods for testing general linear functions of the regression parameters in high-dimensions is extremely challenging – especiall...
متن کاملVarying-Coefficient Functional Linear Regression Models
We propose in this work a generalization of the functional linear model in which an additional real variable influences smoothly the functional coefficient. This leads us to build a varying-coefficient regressionmodel for functional data. We propose two estimators based respectively on conditional functional principal regression and on local penalized regression splines and prove their pointwis...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Econometrics
سال: 2016
ISSN: 0304-4076
DOI: 10.1016/j.jeconom.2016.05.016